已知函数满足
,
是不为
的实常数。
(1)若函数是周期函数,写出符合条件
的值;
(2)若当时,
,且函数
在区间
上的值域是闭区间,求
的取值范围;
(3)若当时,
,试研究函数
在区间
上是否可能是单调函数?若可能,求出
的取值范围;若不可能,请说明理由。
设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.
(1)求a,b的值;
(2)证明:f(x)≤2x-2.
双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为
,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足·
=0,且|
|=10,求直线l的方程.
直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求证:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一点P,使得DP与平面ACB1平行?证明你的结论.
△ABC的内角A、B、C的对边分别为a,b,c,asin A+csin C-asin C=bsin B.
(1)求B;
(2)若A=75°,b=2,求a,c.
以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(1)如果X=8,求乙组同学植树棵数的平均数;
(2) 记甲组四名同学为A1,A2,A3,A4,乙组四名同学为B1,B2,B3,B4,如果X=9,分别从甲、乙两组中随机选取一名同学,列举这两名同学的植树总棵数为19的所有情形并求该事件的概率.