已知函数,数列
通项公式
为
数列满足
,
,设
(1)证明,并求数列
前
项和
(2)若(1)中的满足对任意不小于2的正整数
,
恒成立,求
最大值
给定两个命题,p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数根。如果p∨q为真命题,p∧q为假命题,求实数a的取值范围
在圆上任取一点
,过点
作
轴的垂线段
,
为垂足,当点
在圆上运动时,线段
的中点
的轨迹为曲线
(Ⅰ)求曲线的方程;
(Ⅱ)过点的直线
与曲线
相交于不同的两点
, 点
在线段
的垂直平分线上,且
,求
的值
设数列的前项n和为
,若对于任意的正整数n都有
.
(1)设,求证:数列
是等比数列,并求出
的通项公式。
(2)求数列的前n项和.
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,
∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求的长;
(2)求cos<>的值;
(3)求证:A1B⊥C1M.
命题p:关于的不等式
对于一切
恒成立,命题q:函数
是增函数,若
为真,
为假,求实数
的取值范围;