如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直导轨平面向上,长为L的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒的质量为m、电阻为R.两金属导轨的上端连接右端电路,灯泡的电阻RL=4R,定值电阻R1=2R,电阻箱电阻调到使R2=12R,重力加速度为g,现将金属棒由静止释放,试求:
(1)金属棒下滑的最大速度为多大?
(2)当金属棒下滑距离为S0时速度恰达到最大,求金属棒由静止开始下滑2S0的过程中,整个电路产生的电热;
(3)R2为何值时,其消耗的功率最大?消耗的最大功率为多少?
![]() |
一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多)。在圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为,B球的质量为
,它们沿环形圆管顺时针运动,经过最低点时的速度为
,设A球运动到最低点时,B球恰好运动到最高点,证明:若要此时两球作用于圆管的合力为零,那么
,
,R与
应满足的关系式是:
。
质量为的物体置于动摩擦因数为
的水平面上,现对它施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角时这个力最小?
云室处在磁感应强度为B的匀强磁场中,一静止的质量为M的原于核在云室中发生一次衰变,
粒子的质量为
,电量为q,其运动轨迹在与磁场垂直的平面内,现测得
粒子运动的轨道半径R,试求在衰变过程中的质量亏损。
已知物体从地球上的逃逸速度(第二宇宙速度),其中G、ME、RE分别是引力常量、地球的质量和半径。已知G=6.7×10-11N·m2/kg2,c=3.0×108m/s,求下列问题:(1)逃逸速度大于真空中光速的天体叫做黑洞,设某黑洞的质量等于太阳的质量M=2.0×1030kg,求它的可能最大半径(这个半径叫Schwarhid半径);(2)在目前天文观测范围内,物质的平均密度为10-27kg/m3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(最后结果保留两位有效数字)
两个人要将质量的货物装进离地面离
的卡车车厢内,他们找到一个长为L=5m的斜面,但是没有其他更多可借助的工具。假设货物在接触面上滑动时所受的摩擦阻力恒为货物的重力的0.12倍,两人的最大推力各为800N,他们能否将货物直接推进车厢?你能否帮他们将此方案加以改进,设计一个可行的方案?