游客
题文

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆),其焦距为,若),则称椭圆为“黄金椭圆”.
(1)求证:在黄金椭圆)中,成等比数列.
(2)黄金椭圆)的右焦点为为椭圆上的
任意一点.是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆)的左、右
焦点分别是,以为顶点的菱形的内切圆过焦点
试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题



(1)设为攻关期满时获奖的攻关小组数,求的分布列及
(2)设为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数在定义域内单调递减”为事件,求事件的概率



侧棱PA=PD,底面ABCD为直角梯形,其中
BCAD,ABAD,AD=2AB=2BC=2,OAD中点.
(1)求证:PO⊥平面ABCD
(2)求异面直线PBCD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.

数列{an}的前n项和记为Sn
(1)求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又成等比数列,求Tn

a为实数,记函数的最大值为g(a).
(1)设t,求t的取值范围,并把fx)表示为t的函数mt);
(2)求g(a);
(3)试求满足的所有实数a

设函数.
(1)在区间上画出函数的图像;
(2)设集合. 试判断集合之间的关系,并给出证明;
(3)当时,求证:在区间上,的图像位于函数图像的
上方.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号