游客
题文

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆),其焦距为,若),则称椭圆为“黄金椭圆”.
(1)求证:在黄金椭圆)中,成等比数列.
(2)黄金椭圆)的右焦点为为椭圆上的
任意一点.是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆)的左、右
焦点分别是,以为顶点的菱形的内切圆过焦点
试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本小题满分10分)选修4—1:几何证明选讲
如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点垂直交圆于点

(1)证明:
(2)设圆的半径为1,,延长于点,求外接圆的半径.

已知函数的图像在点处的切线为.().
(1)求函数的解析式;
(2)若对任意的恒成立,求实数的取值范围.

如图,椭圆的右焦点为,右顶点、上顶点分别为点,且

(1)求椭圆的离心率;
(2)若斜率为2的直线过点,且交椭圆两点,.求直线的方程及椭圆的方程.

为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容量和频率分布直方图中的的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,求所抽取的2名学生中至少有一人得分在内的概率.

如图,设四棱锥的底面为菱形,且∠

(1)求证:平面平面
(2)设的中点,求三棱锥的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号