如图所示,光滑水平地面上方被竖直平面MN分隔成两部分,左边(包括竖直平面MN)有匀强磁场B,右边有匀强电场E0(图中未标)。在O点用长为L=5m的轻质不可伸长的绝缘细绳系一质量mA=0.02kg、带负电且电荷量qA=4×10-4C的小球A,使其在竖直平面内以速度vA=2.5m/s沿顺时针方向做匀速圆周运动,运动到最低点时与地面刚好不接触。处于原长的轻质弹簧左端固定在墙上,右端与质量mB=0.01kg、带负电且电荷量qB=2×10-4C的小球B接触但不连接,此时B球刚好位于M点。现用水平向左的推力将B球缓慢推到P点(弹簧仍在弹性限度内),推力所做的功是W=2.0J,当撤去推力后,B球沿地面向右运动到M点时对地面的压力刚好为零,继续运动恰好能与A球在最低点发生正碰,并瞬间成为一个整体C(A、B、C都可以看着质点),碰撞前后总电荷量保持不变,碰后瞬间匀强电场大小变为E1=1×103 N/C,方向不变。g=10m/s2。求:
(1)匀强磁场的磁感应强度B的大小和方向?
(2)匀强电场的电场强度E0的大小和方向?
(3)整体C运动到最高点时绳对C的拉力F的大小?
用两根长度均为L的绝缘细线各系一个小球,并悬挂于同一点。已知两小球质量均为m,当它们带上等量同种电荷时,两细线与竖直方向的夹角均为θ,如图所示。若已知静电力常量为k,重力加速度为g。求:
(1)小球所受拉力的大小;
(2)小球所带的电荷量。
图18甲所示,平行金属板PQ、MN水平地固定在地面上方的空间,金属板长 l=20cm,两板间距d=10cm,两板间的电压UMP=100V。在距金属板M端左下方某位置有一粒子源A,从粒子源竖直向上连续发射速度相同的带电粒子,射出的带电粒子在空间通过一垂直于纸面向里的磁感应强度B=0.20T的圆形区域匀强磁场(图中未画出)后,恰好从金属板 PQ左端的下边缘水平进入两金属板间,带电粒子在电场力作用下恰好从金属板MN的右边缘飞出。已知带电粒子的比荷=2.0×106C/kg,粒子重力不计,计算结果保留两位有效数字。求:
(1)带电粒子射人电场时的速度大小;
(2)圆形匀强磁场区域的最小半径;
(3)若两金属板间改加如图乙所示的电压,在哪些时刻进入两金属板间的带电粒子不碰到极板而能够飞出两板间。
如图所示,水平地面上方有一高度为H、上、下水平界面分别为PQ、MN的匀强磁场,磁感应强度为B。矩形导线框ab边长为l1,bc边长为l2,导线框的质量为m,电阻为R。磁场方向垂直于线框平面向里,磁场高度H> l2。线框从某高处由静止落下,当线框的cd边刚进入磁场时,线框的加速度方向向下、大小为;当线框的cd边刚离开磁场时,线框的加速度方向向上、大小为
。在运动过程中,线框平面位于竖直平面内,上、下两边总平行于PQ。空气阻力不计,重力加速度为g。求:
(1)线框的cd边刚进入磁场时,通过线框导线中的电流;
(2)线框的ab边刚进入磁场时线框的速度大小;
(3)线框abcd从全部在磁场中开始到全部穿出磁场的过程中,通过线框导线横截面的电荷量。
下图是用直流发电机为保温室中电热器供电的电路图,直流发电机的电动势为250V,内阻为0.50Ω,输电线电阻R1=R2=1.0Ω。保温室中装有若干只完全相同的电热器用来调节室温,每只电热器的额定电压为200V,额定功率为1000W,其他电阻不计,也不考虑电热器电阻随温度的变化。求:
(1)为使电热器能正常工作,应接入多少个电热器;
(2)在电热器正常工作状态下,直流发电机对保温室供热的效率;
(3)保温室内的电热器可能消耗的最大电功率。
如图所示,MN、PQ为足够长的平行金属导轨,间距L=0.50m,导轨平面与水平面间夹角θ=370,N、Q间连接一个电阻R=5.0Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0T。将一根质量m=0.050kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计。现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好。已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd处时,其速度大小开始保持不变,位置cd与ab之间的距离s=2.0m。已知g=10m/s2,sin370=0.60,cos370=0.80。求:
(1)金属棒沿导轨开始下滑时的加速度大小;
(2)金属棒达到cd处的速度大小;
(3)金属棒由位置ab运动到cd的过程中,电阻R产生的热量。