选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。)
22.选修4-1:几何证明选讲
如图,已知是⊙
的切线,
为切点,
是⊙
的割线,与⊙
交于
两点,圆心
在
的内部,点
是
的中点。
(1)证明四点共圆;
(2)求的大小。
23.选修4—4:坐标系与参数方程
已知直线经过点
,倾斜角
。
(1)写出直线的参数方程;
(2)设与曲线
相交于两点
,求点
到
两点的距离之积。
24.选修4—5:不等式证明选讲
若不等式与不等式
同解,而
的解集为空集,求实数
的取值范围。
(本小题满分12分)
已知函数
(1)求函数的最小正周期;
(2)当时,求函数f (x) 的最大值与最小值及相应的
值。
某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水
化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳
水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中
至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.
如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,
并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
(本题满分14分)
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视
观众,相关的数据如下表所示:
文艺节目 |
新闻节目 |
总计 |
|
20至40岁 |
40 |
18 |
58 |
大于40岁 |
15 |
27 |
42 |
总计 |
55 |
45 |
100 |
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽出5名,大于40岁的观众应该
抽取几名?
(3)在上述抽取的5名观众中任取出2名,求恰有1名观众年龄20岁至40岁的概率。
在△ABC中,已知B=45°,D是BC边上的一点,
AD=10,AC=14,DC=6,求AB的长.
(本题共12分,每小题6分)
(1)证明
(2)化简