如图甲,平行导轨MN、PQ水平放置,电阻不计.两导轨间距d=10cm,导体棒ab、cd放在导轨上,并与导轨垂直.每根棒在导轨间的部分,电阻均为R=1.0Ω.用长为L=20cm的绝缘丝线将两棒系住.整个装置处在匀强磁场中.t=0的时刻,磁场方向竖直向下,丝线刚好处于未被拉伸的自然状态.此后,磁感应强度B随时间t的变化如图乙所示.不计感应电流磁场的影响.整个过程丝线未被拉断.求:
⑴0~2.0s的时间内,电路中感应电流的大小与方向;
⑵t=1.0s的时刻丝线的拉力大小.
如图所示,一光滑斜面固定在水平地面上,质量m=lkg的物体在平行于斜面向上的恒力F作用下,从A点由静止开始运动,到达B点时立即撤去拉力F。此后,物体到达C点时速度为零。每隔0.2s通过传感器测得物体的瞬时速度,下表给出了部分测量数据。
t/s |
0.0 |
0.2 |
0.4 |
… |
2.2 |
2.4 |
… |
v/m·s-1 |
0.0 |
1.0 |
2.0 |
… |
3.3 |
2.1 |
… |
求:(1)恒力F的大小。
(2)撤去外力F的时刻。
为了研究过山车的原理,物理小组提出了下列的设想:取一个与水平方向夹角为,长为L=2.0m的粗糙倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个小物块以初速度
,从某一高处水平抛出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下。已知物块与倾斜轨道的动摩擦因数
(g取l0m/s2,sin37°=0.6,cos37°=0.80)求:
(1)小物块的抛出点和A点的高度差;
(2)为了让小物块不离开轨道,并且能够滑回倾斜轨道AB,则竖直圆轨道的半径应该满足什么条件。
(3)要使小物块不离开轨道,并从水平轨道DE滑出,求竖直圆弧轨道的半径应该满足什么条件.
如下图所示是游乐场中过山车的实物图片,左图是过山车的模型图。在模型图中半径分别为R1=2.0m和R2=8.0m的两个光滑圆形轨道,固定在倾角为α=37°斜轨道面上的Q、Z两点,且两圆形轨道的最高点A、B均与P点平齐,圆形轨道与斜轨道之间圆滑连接。现使小车(视作质点)从P点以一定的初速度沿斜面向下运动。已知斜轨道面与小车间的动摩擦因数为μ=1/24,g=10m/s2,sin37°=0.6,cos37°=0.8。问:
(1)若小车恰好能通过第一个圆形轨道的最高点A处,则其在P点的初速度应为多大?
(2)若小车在P点的初速度为10m/s,则小车能否安全通过两个圆形轨道?
如图所示,质量M=kg的木块A套在水平杆上,并用轻绳将木块A与质量m=
kg的小球相连。今用跟水平方向成α=300角的力F=
N,拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变,取g=10m/s2。求:
(1)运动过程中轻绳与水平方向夹角θ;
(2)木块与水平杆间的动摩擦因数μ。
如图所示,电子以速度v0沿与电场垂直的方向从A点飞入匀强电场,并且从另一侧的B点沿与电场成150°角的方向飞出,已知电子的质量为m,电荷量为e,求A、B两点的电势差.