(本小题满分12分)如图,椭圆经过点,离心率。(l)求椭圆的方程;(2)设直线与椭圆交于两点,点关于轴的对称点为与不重合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由。
如图,在直三棱柱中,,,是中点. (1)求证:平面; (2)求直线与平面所成角的正弦值.
已知圆经过坐标原点和点,且圆心在轴上. (1)求圆的方程; (2)设直线经过点,且与圆相交所得弦长为,求直线的方程.
如图,在四棱锥中,底面为矩形,底面,、分别是、中点. (1)求证:平面; (2)求证:.
已知函数 (1)求的最小值; (2)设,. (ⅰ)证明:当时,的图象与的图象有唯一的公共点; (ⅱ)若当时,的图象恒在的图象的上方,求实数的取值范围.
如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面. (1)证明:平面.; (2)若,求三棱锥的体积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号