在一次考试中,5名同学数学、物理成绩如下表所示:
学生 |
A |
B |
C |
D |
E |
数学(x分) |
89 |
91 |
93 |
95 |
97 |
物理(y分) |
87 |
89 |
89 |
92 |
93 |
(1)根据表中数据,求物理分对数学分
的回归方程:
(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以表示选中的同学中物理成绩高于90分的人数,求随机变量
的分布列及数学期望
.(附:回归方程
中,
,
)
如图,在三棱柱中,已知
,
,
,
.
(1)求证:;
(2)设(
),且平面
与
所成的锐二面角的大小为30°,试求的值.
已知数列满足
,
,
.
(1)求证:是等差数列;
(2)证明:.
已知向量,
,
.
(1)若⊥
,求
的值;
(2)若∥
,求
的值.
已知数列的前n项和为
,设数列
满足
.
(1)若数列为等差数列,且
,求数列
的通项公式;
(2)若,
,且数列
,
都是以2为公比的等比数列,求满足不等式
的所有正整数n的集合.