固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力作用下向上运动,推力与小环速度随时间变化规律如图所示,取重力加速度.求:
(1)小环的质量;
(2)细杆与地面间的倾角.
塔式起重机的结构如图所示,设机架重P=400 kN,悬臂长度为L=10 m,平衡块重W=200 kN,平衡块与中心线OO/的距离可在1 m到6 m间变化,轨道A、B间的距离为4 m。
⑴当平衡块离中心线1 m,右侧轨道对轮子的作用力fB是左侧轨道对轮子作用力fA的2倍,问机架重心离中心线的距离是多少?
⑵当起重机挂钩在离中心线OO/10 m处吊起重为G=100 kN的重物时,平衡块离OO/的距离为6 m,问此时轨道B对轮子的作用力FB时多少?
图中是用电动砂轮打磨工件的装置,砂轮的转轴过图中O点垂直于纸面,AB是一长度,质量
的均匀刚性细杆,可绕过A端的固定轴在竖直面(图中纸面)内无摩擦地转动,工件C固定在AB杆上,其质量
,工件的重心、工件与砂轮的接触点P以及O点都在过AB中点的竖直线上,P到AB杆的垂直距离
,AB杆始终处于水平位置,砂轮与工件之间的动摩擦因数
(1)当砂轮静止时,要使工件对砂轮的压力N,则施于B端竖直向下的力
应是多大?
(2)当砂轮逆时针转动时,要使工件对砂轮的压力仍为N,则施于B端竖直向下的力
应是多大?
如图所示,倾角为θ的斜面上静止放置三个质量均为m的木箱,相邻两木箱的距离均为l。工人用沿斜面的力推最下面的木箱使之上滑,逐一与其它木箱碰撞。每次碰撞后木箱都粘在一起运动。整个过程中工人的推力不变,最后恰好能推着三个木箱匀速上滑。已知木箱与斜面间的动摩擦因数为μ,重力加速度为g.设碰撞时间极短,求
(1) 工人的推力;
(2) 三个木箱匀速运动的速度;
(3) 在第一次碰撞中损失的机械能。
真空中有一半径为r的圆柱形匀强磁场区域,磁场方向垂直于纸面向里,Ox为过边界上O点的切线,如图所示,从O点在纸面内向各个方向发射速率均为v0的电子,设电子间相互作用忽略,且电子在磁场中偏转半径也为r.已知电子的电量为e,质量为m.
(1)圆柱形区域匀强磁场的磁感应强度大小为多少?
(2)速度方向与Ox方向夹角成90°的电子,在磁场中的运动时间为多少?
(3)在x轴上有一点p,距O点的距离为3r,要使从O点发射的速率均为v0的电子,从磁场边界出来后都能够汇聚到p点,请在图中虚线MN右侧添加一个匀强磁场,并说明磁感应强度大小和方向及分布情况。
如图所示的装置,左半部为速度选择器,右半部为匀强的偏转电场.一束同位素离子流从狭缝S1射入速度选择器,能够沿直线通过速度选择器并从狭缝S2射出的离子,又沿着与电场垂直的方向,立即进入场强大小为E的偏转电场,最后打在照相底片D上.已知同位素离子的电荷量为q(q>0),速度选择器内部存在着相互垂直的场强大小为E0的匀强电场和磁感应强度大小为B0的匀强磁场,照相底片D与狭缝S1、S2的连线平行且距离为L,忽略重力的影响.
(1)求从狭缝S2射出的离子速度v0的大小;
(2)若打在照相底片上的离子在偏转电场中沿速度v0方向飞行的距离为x,求出x与离子质量m之间的关系式(用E0、B0、E、q、m、L表示).