在平面直角坐标系xOy中,已知三点A(-1,0),B(1,0),,以A、B为焦点的椭圆经过点C。
(I)求椭圆的方程;
(II)设点D(0,1),是否存在不平行于x轴的直线与椭圆交于不同两点M、N,使
?若存在,求出直线
斜率的取值范围;若不存在,请说明理由:
(III)对于y轴上的点P(0,n),存在不平行于x轴的直线
与椭圆交于不同两点M、N,使
,试求实数n的取值范围。
AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。
(I)求证:BF⊥平面DAF;
(II)求多面体ABCDFE的体积。
已知函数
(I)若的最大值和最小值;
(II)若的值。
对400个某种型号的电子元件进行寿命追踪调查,其频率分布表如下表:
寿命(h) |
频率 |
500600 |
0.10 |
600700 |
0.15 |
700800 |
0.40 |
800900 |
0.20 |
9001000 |
0.15 |
合计 |
1 |
(I)在下图中补齐频率分布直方图;
(II)估计元件寿命在500800h以内的概率。
已知数列各项均为正数,其前
项和
满足
(1)证明:为等差数列
(2)令,记
的前
项和为
,求证:
在平面内,设到定点F(0,2)和轴距离之和为4的点P轨迹为曲线C,直线
过点F,交曲线C于M,N两点。
(1)说明曲线C的形状,并画出图形;
(2)求线段MN长度的范围。