(10分)铁路转弯处的弯道半径r是根据地形决定的,弯道处要求外轨比内轨高,其内外轨的高度差h的设计不仅与r有关,还取决于火车在弯道上的行驶速率,表中数据是铁路设计人员技术手册中弯道半径r及与之对应的轨道的高度差h
轨道半径r/m |
660 |
330 |
220 |
165 |
132 |
110 |
内外轨高度差h/mm |
50 |
100 |
150 |
200 |
250 |
300 |
(1)根据表中数据,试导出h与r关系的表达式,并求出当r=440m时,h的设计值
(2)铁路建成后,火车通过弯道时,要求内外轨均不受车轮施加的侧向压力,又已知我国铁路内外轨间距为L=1435mm,结合表中数据,计算我国火车的转弯速率(取g=10m/s2。结果取整数,路轨倾角很小时,正切值按正弦值计算)
如图甲所示,质量为2kg的物体在离斜面底端4 m处由静止滑下,若动摩擦因数均为0.5,斜面倾角37°,斜面与平面间由一小段圆弧连接,求物体能在水平面上滑行多远?摩擦力做的总功是多少?(cos370=0.8 sin370=0.6 g=10m/s2)
(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.
(2) 一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?
已知某行星的质量为M,质量为m的卫星围绕该行星的半径为R,求该卫星的角速度、线速度、周期和向心加速度各是多少?
如图所示,质量m=1 kg的小球用细线拴住,线长l= 0.5 m,细线所受拉力达到F=18 N时就会被拉断.当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断.若此时小球距水平地面的高度h=5 m,重力加速度g=10 m/s2,求小球落地处到地面上P点的距离.(P点在悬点的正下方)
长为R的轻杆一端固定一质量为m的小球,以另一端为固定转轴,使之在竖直平面内做圆周运动.求以下两种情况时小球在最高点的速度各为多少?
(1)在最高点时,小球对杆的压力为mg
(2)在最高点时,小球对杆的拉力为mg