氢原子从能级A跃迁到能级B吸收频率为ν1的光子,从能级A跃迁到能级C释放频率为ν2的光子。若ν2>ν1,则当它从能级B跃迁到能级C时,将
A.放出频率为ν2-ν1的光子 |
B.放出频率为ν2+ν1的光子 |
C.吸收频率为ν2-ν1的光子 |
D.吸收频率为ν2+ν1光子 |
在光滑水平桌面中央固定一边长为0.3m的小正三棱柱abc,俯视如图。长度为L=1m的细线,一端固定在a点,另一端拴住一个质量为m=0.5kg、不计大小的小球。初始时刻,把细线拉直在ca的延长线上,并给小球以v0=2m/s且垂直于细线方向的水平速度,由于光滑棱柱的存在,细线逐渐缠绕在棱柱上(不计细线与三棱柱碰撞过程中的能量损失)。已知细线所能承受的最大张力为7N,则下列说法中不正确的是
A.细线断裂之前,小球速度的大小保持不变 |
B.细线断裂之前,小球的速度逐渐减小 |
C.细线断裂之前,小球运动的总时间为0.7π s |
D.细线断裂之前,小球运动的位移大小为0.9 m |
低碳环保是我们现代青年追求的生活方式。如图所示,是一个用来研究静电除尘的实验装置,处于强电场中的空气分子会被电离为电子和正离子,当铝板与手摇起电机的正极相连,缝被针与手摇起电机的负极相连,在铝板和缝被针中间放置点燃的蚊香。转动手摇起电机,蚊香放出的烟雾会被电极吸附,停止转动手摇起电机,蚊香的烟雾又会袅袅上升。关于这个现象,下列说法中正确的是
A.烟尘因为带正电而被吸附到缝被针上 |
B.同一烟尘颗粒在被吸附过程中离铝板越近速度越小 |
C.同一烟尘颗粒在被吸附过程中离铝板越近速度越大 |
D.同一烟尘颗粒在被吸附过程中如果带电量不变,离铝板越近则加速度越大 |
如图示,相互垂直的固定绝缘光滑挡板PO,QO竖直放置在重力场中,a、b为两个带有同种电量的小球(可以近似看成点电荷),当用水平向左作用力F作用于b时,a、b紧靠挡板处于静止状态.现若稍改变F的大小,使b稍有向左移动一段小距离,则当a、b重新处于静止状态后
A.a、b间电场力增大 |
B.作用力F将减小 |
C.系统重力势能增加 |
D.系统的电势能将增加 |
某同学将一直流电源的总功率PE、输出功率PR和电源内部的发热功率Pr随电流I变化的图线画在同一坐标系内,如图所示,根据图线可知下列说法错误的是
A.反映Pr变化的图线是c |
B.电源电动势为8V |
C.电源内阻为2Ω |
D.当电流为0.5A时,外电路的电阻为6Ω。 |
酒后驾驶会导致许多安全隐患,其中之一是驾驶员的反应时间变长,反应时间是指驾驶员从发现情况到开始采取制动的时间.下表中“思考距离”是指驾驶员从发现情况到采取制动的时间内汽车行驶的距离,“制动距离”是指驾驶员从发现情况到汽车停止行驶的距离(假设汽车制动时的加速度大小都相同).
速度(m/s) |
思考距离/m |
制动距离/m |
||
正常 |
酒后 |
正常 |
酒后 |
|
15 |
7.5 |
15.0 |
22.5 |
30.0 |
20 |
10.0 |
20.0 |
36.7 |
46.7 |
25 |
12.5 |
25.0 |
54.2 |
x |
分析上表可知,下列说法不正确的是
A.驾驶员酒后反应时间比正常情况下多0.5 s
B.若汽车以20 m/s的速度行驶时,发现前方40m处有险情,酒后驾驶不能安全停车
C.汽车制动时,加速度大小为10m/s2
D.表中x为66.7