(本小题满分12分)
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n()个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.
现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1)写出a1,a2,a3,并求出an;
(2)记,求和
(
);
(其中表示所有的积
的和)
(3)证明:.
已知,点
在函数
的图象上,其中
(1)求;
(2)证明数列是等比数列;
(3)设,求
及数列
的通项
已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点
,双曲线的实轴为
,
为双曲线上一点(不同于
),直线
,
分别与直线
交于
两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。
如图,在四棱锥中,底面
是正方形,侧面
是正三角形,且平面
⊥底面
(1)求证:⊥平面
(2)求直线与底面
所成角的余弦值;
(3)设,求点
到平面
的距离.
一个盒子中有5只同型号的灯泡,其中有3只合格品,2只不合格品。现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:
(1)求第一次取到不合格品,且第二次取到的是合格品的概率;
(2)求至少有一次取到不合格品的概率。
在中,
.
(1)求角的大小;
(2)若,
,求
.