游客
题文

(本小题满分12分)
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.

现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1)写出a1a2a3,并求出an
(2)记,求和);
(其中表示所有的积的和)
(3)证明:

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知圆C方程:(x-1)2 + y 2=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且

(1)求点P的轨迹方程;
(2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.

已知函数.
(1)若曲线经过点,曲线在点处的切线与直线平行,求的值;
(2)在(1)的条件下,试求函数为实常数,)的极大值与极小值之差;

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.


(1)判别MN与平面AEF的位置关系,并给出证明;
(2)证明AB⊥平面BEF;
(3)求多面体E-AFNM的体积.

某学校900名学生在一次百米测试中,成绩全部介于秒与秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,下图是按上述分组方法得到的频率分布直方图.

(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级900名学生中,成绩属于第三组的人数;
(3)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽一个同学组成一个新的组,求这个新组恰好由一个男生和一个女生构成的概率.

已知函数的部分图象如图所示.

(1)求函数的解析式,并写出的单调减区间;
(2)记的内角的对边长分别为
的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号