如图所示,在以O为圆心,半径为R=10cm的圆形区域内,有一个水平方向的匀强磁场,磁感应强度大小为B2=0.1T,方向垂直纸面向外。M、N为竖直平行放置的相距很近的两金属板, S1、S2为M、N板上的两个小孔,且S1、S2跟O点在垂直极板的同一水平直线上。金属板M、N与一圆形金属线圈相连,线圈的匝数n=1000匝,面积S=0.2m2,线圈内存在着垂直纸面向外的匀强磁场,磁感应强度大小随时间变化的规律为B1=B0+kt(T),其中B0、k为常数。另有一水平放置的足够长的荧光屏D,O点跟荧光屏D之间的距离为H=2R。比荷为2×105 C/kg的正离子流由S1进入金属板M、N之间后,通过S2向磁场中心射去,通过磁场后落到荧光屏D上。离子的初速度、重力、空气阻力及离子之间的作用力均可忽略不
计。问
:
(1)k值为多少可使正离子垂直打在荧光屏上?
(2)若k=0.45T/s,求正离子到达荧光屏的位置。
相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1.0kg的金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同。ab棒光滑,cd棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为R=1.8Ω,导轨电阻不计。ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放。取重力加速度g=10m/s2。
(1)求出磁感应强度B的大小和ab棒加速度大小;
(2)已知在2 s内外力F做功40 J,求这一过程中两金属棒产生的总焦耳热;
(3)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时间t0,并在图(c)中定性画出cd棒所受摩擦力fcd随时间变化的图象。
如图17所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/C,在y≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T,一带电量q=+0.2C、质量m=0.4kg的小球由长L=0.4m的细线悬挂于P点。小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂。取重力加速度g=10m/s。求:
(1)小球运动到O点时的速度大小;
(2)悬线断裂前瞬间拉力的大小;
(3)悬线断裂后0.2s小球的位置坐标。
如图16所示,在分别为和
的两个相邻的条形区域中分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。一带正电的粒子以速率v从磁场区域的上边界的P点向下成θ=60º射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q点射出。已知PQ垂直于电场方向,不计重力。求电场强度和磁感应强度大小之比,以及粒子在磁场与电场中运动的时间之比。
如图14所示,一块磁铁放在铁板ABC上的A处,其中AB长为lm,BC长为0.8m,BC与水平面间的夹角为37°,磁铁与铁板间的引力为磁铁重的0.2倍,磁铁与铁板间的动摩擦因数μ=0.25,现在给磁铁一个水平向左的初速度v0=4m/s。不计磁铁经过B处的机械能损失,取g=10m/s2,已知sin37°=0.6,cos37°=0.8。则:
(1)求磁铁第一次到达B处的速度大小;
(2)求磁铁在BC上向上运动的加速度大小;
(3)请分析判断磁铁最终能否第二次到达B点。
北京奥运会的开闭幕式给我们留下了深刻的印象。在闭幕式演出中出现了一种新型弹跳鞋叫弹跳跷,主要是由后面的弹簧(弓)和铝件组成。绑在脚上,能够一步行走二到三米的距离,弹跳高度达到一至两米,是青年中新兴的一种体育运动。一名质量m=60kg的学生穿着这种鞋从距地面H=1.8m高处由静止落下,与水平地面撞击后反弹上升的最大高度h=1.25m,从落下到弹跳至h高处经历的时间t=2.1s。忽略空气阻力,重力加速度g=10m/s2,求:
(1)学生与地面撞击过程中损失的机械能;
(2)学生与地面接触的时间
(3)学生对地面的平均撞击力。