某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金200元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券.
(Ⅰ)求家具城恰好返还该顾客现金200元的概率;
(Ⅱ)设该顾客有ξ张奖券中奖,求ξ的分布列,并求ξ的数学期望E.
(满分12分)已知函数的单调递减区间是(1,2),且满足
。
(1)求的解析式;
(2)对任意,关于
的不等式
在
上有解,求实数
的取值范围。
(满分12分)已知圆O:,点P在直线
上的动点。
(1)若从P到圆O的切线长为,求P点的坐标以及两条切线所夹劣弧长;
(2)若点A(-2,0),B(2,0),直线PA,PB与圆O的另一个交点分别为M,N,求证:直线MN经过定点(1,0)。
(满分12分)定义在R上的奇函数有最小正周期4,且
时,
。
(1)求在
上的解析式;
(2)判断在(0,2)上的单调性,并给予证明;
(3)当为何值时,关于方程
在
上有实数解?
(满分12分)是等差数列
的前
项和,
,
。
(1)求的通项公式;
(2)设(
是实常数,且
),求
的前
项和
。
(满分12分)设命题P:关于的不等式:
的解集是R,命题Q:函数
的定义域为R,若P或Q为真,P且Q为假,求
的取值范围。