某射手每次射击击中目标的概率是 2 3 ,且各次射击的结果互不影响。 (Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率 (Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率; (Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记 ξ 为射手射击3次后的总的分数,求 ξ 的分布列。
已知集合,,若,求实数、的值.
集合,,求,,.
选修4-5:不等式选讲 设函数. (1)解不等式; (2)求函数的最小值.
选修4—4:坐标系与参数方程 已知曲线C1的极坐标方程为,曲线C2的极坐标方程为(,曲线C1,C2相交于点A,B。 (1)将曲线C1,C2的极坐标方程化为直角坐标方程; (2)求弦AB的长。
选修4-1:几何证明选讲 如图,圆O的直径AB=10,弦DE⊥AB于点H,AH=2。 (1)求DE的长; (2)延长ED到P,过P作圆O的切线, 切点为C,若PC=2,求PD的长。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号