如图1所示,宽度为的竖直狭长区域内(边界为),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为,表示电场方向竖直向上。时,一带正电、质量为的微粒从左边界上的点以水平速度射入该区域,沿直线运动到点后,做一次完整的圆周运动,再沿直线运动到右边界上的点。为线段的中点,重力加速度为。上述为已知量。
(1)求微粒所带电荷量和磁感应强度的大小;
(2)求电场变化的周期;
(3)改变宽度,使微粒仍能按上述运动过程通过相应宽度的区域,求的最小值。
卡车原来用10m/s的速度匀速在平直公路上行驶,因为道口出现红灯,司机从较远的地方即开始刹车,使卡车匀减速前进,当车减速到2m/s时,交通灯转为绿灯,司机当即放开刹车,并且只用了减速过程的一半时间卡车就加速到原来的速度,从刹车开始到恢复原速过程用了12s。求:
(1)减速与加速过程中的加速度;
(2)开始刹车后2s末及10s末的瞬时速度。
如图所示,在光滑水平面上固定相距40cm的两个钉子A和B,长1m的细绳一端系着质量为0.4kg的小球,另一端固定在钉子A上,开始时小球和钉子A、B在同一直线上,小球始终以2m/s的速率,在水平面上做匀速圆周运动,若细绳能够承受最大拉力为4N,那么从开始到细绳断开所经历的时间是多少?
如图所示,轨道ABCD的AB段为一半径R=0.2的光滑1/4圆形轨道,BC段为高为h=5
的竖直轨道,CD段为水平轨道。一质量为0.1
的小球由A点从静止开始下滑到B点时速度的大小为2
/s,离开B点做平抛运动(g取10
/s2),求:
①小球离开B点后,在CD轨道上的落地点到C的水平距离;
②小球到达B点时对圆形轨道的压力大小?
已知月球绕地球的周期T,轨道半径r,地球的半径是R,万有引力常量是G。
求:地球的质量与地球的密度
某星球的质量为,在该星球表面某一倾角为
的山坡上以初速度v0平抛一个物体,经
时间该物体落到山坡上。欲使该物体不再落回该星球的表面,至少应以多大的速度抛出物体?(不计一切阻力,万有引力常量为
)