设分别是椭圆E:
(a>b>0)的左、右焦点,过
斜率为1的直线l与E 相较于A,B两点,且
,
,
成等差数列.
(Ⅰ)求E的离心率;
(Ⅱ)设点P(0,-1)满足,求E的方程.
过点Q 作圆C:x2+y2=r2(
)的切线,切点为D,且QD=4.
(1)求r的值;
(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y 轴于点B,设,求
的最小值(O为坐标原点).
如图,已知三棱柱ABC-A1B1C1中,侧棱A A1⊥底面ABC
AB⊥BC;
(Ⅰ)求证:平面A1BC⊥侧面A1ABB1.
(Ⅱ)若,直线AC与平面A1BC所成的角为
,
求AB的长。
已知数列的首项为
=3,通项
与前n项和
之间满足2
=
·
(n≥2)。
(1)求证:是等差数列,并求公差;
(2)求数列的通项公式。
设△ABC的内角A,B,C的对边分别为a,b,c.已知,求:
(Ⅰ)A的大小;
(Ⅱ)若,求
面积的最大值.
如图,在长为52宽为42的大矩形内有一个边长为18的小正方形,现向大矩形内
随机投掷一枚半径为1的圆片,求:
(Ⅰ)圆片落在大矩形内部时,其圆心形成的图形面积;
(Ⅱ)圆片与小正方形及内部有公共点的概率.