如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为,两侧为相同的匀强磁场,方向垂直纸面向里。一质量为、带电量、重力不计的带电粒子,以初速度垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动。已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推。求
(1)粒子第一次经过电场的过程中电场力所做的功。
(2)粒子第次经过电场时电场强度的大小。
(3)粒子第次经过电场所用的时间
(4)假设粒子在磁场中运动时,电场区域场强为零。请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值)。
如图所示,在石轴上方存在匀强磁场,磁感应强度为B,方向垂直纸面向内。在x轴下方存在匀强电场,方向竖直向上。一个质量为m,电荷量为q,重力不计的带正电粒子从y轴上的a(h、0)点沿y正方向以某初速度开始运动,一段时间后,粒子与x轴正方向成45°进入电场,再次经过y轴的b点时速度方向恰好与y轴垂直。求:
(1)粒子在磁场中运动的轨道半径厂和速度大小v1;
(2)匀强电场的电场强度大小E;
(3)粒子从开始到第三欢经过x轴的时间t总
如图甲所示,质量m="l" kg的物块在平行斜面向上的拉力尸作用下从静止开始沿斜面向上运动,t=0.5s时撤去拉力,利用速度传感器得到其速度随时间的变化关系图象(v-t图象)如图乙所示,g取l0m/s2,求:
(1)2s内物块的位移大小s和通过的路程L;
(2)沿斜面向上运动两个阶段加速度大小a1、a2和拉力大小F。
在光滑的水平面内,一质量m="1" kg的质点以速度v0="10" m/s沿x轴正方向运动,经过原点后受一沿y轴正方向上的水平恒力F="15" N作用,直线OA与x轴成α=37°角,如图所示曲线为质点的轨迹图(g取10 m/s2,sin37°=0.6,cos37°=0.8),求:
(1)如果质点的运动轨迹与直线OA相交于P点,质点从O点到P点所经历的时间以及P点的坐标;
(2)质点经过P点的速度大小。
)水的摩尔质量为M=18g/mol,水的密度为103kg/m3,阿伏伽德罗常数为
,则V=1cm3的水中有多少个水分子(保留一位有效数字).
(原创)如图甲所示,平行放置的金属板A、B间电压为U0,中心各有一个小孔P、Q;平行放置的金属板C、D间电压变化规律如图乙,板长和板间距均为L;粒子接收屏M与D板夹角为. 现从P点处连续不断地有质量为 m、带电量为+q的粒子放出(粒子的初速度可忽略不计),经加速后从Q点射出,贴着C板并平行C板射入,经周期T粒子恰好通过C、D间电场(粒子间相互作用力忽略不计,重力不计,
,
).
(1)T与上述物理量之间应满足怎样的关系;
(2)若在t=0时刻进入C、D间电场的粒子恰从D板边缘飞出,则U为多少?并求此粒子射出时的速度v;
(3)在(2)的条件下,欲使从C、D间飞出的粒子汇聚在M板上某一点,并使在时刻进入C、D间的粒子垂直打在M板上,可在C、D右边某处加一垂直纸面的匀强磁场,试求磁感应强度B的大小和磁场的最小面积Smin.