如图,四棱锥 S - A B C D 中, S D ⊥ 底面 A B C D , A B / / D C , A D ⊥ D C , A B = A D = 1 , D C = S D = 2 , E 为棱 S B 上的一点,平面 E D C ⊥ 平面 S B C . (Ⅰ)证明: S E = 2 E B ; (Ⅱ)求二面角 A - D E - C 的大小 .
已知. (1)当时,解不等式; (2)当时,恒成立,求实数的取值范围.
已知ΔABC的三边方程是AB:,BC: CA:, (1)求∠A的大小. (2)求BC边上的高所在的直线的方程.
已知椭圆方程为,它的一个顶点为,离心率. (1)求椭圆的方程; (2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面 积的最大值.
已知函数,其中R. (1)若曲线在点处的切线方程为,求函数的解析 式; (2)当时,讨论函数的单调性.
在数列中,已知 (1)设,求证:数列是等比数列; (2)求数列的前项和
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号