某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素.
如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
已知:.求证:
中至少有一个不小于
.
已知函数.
(Ⅰ)当时,求函数
在
处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数有两个极值点
,不等式
恒成立,求实数
的取值范围.
已知椭圆的离心率为
,且它的一个焦点
的坐标为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过焦点的直线与椭圆相交于
两点,
是椭圆上不同于
的动点,试求
的面积的最大值.
某商场的销售部经过市场调查发现,该商场的某种商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求的值;
(Ⅱ)若该商品的成本为元/千克,试确定销售价格
的值,使该商场每日销售该商品所获得的利润最大.
已知函数(
)在
处有极小值.
(Ⅰ)求的值;
(Ⅱ)求在区间
上的最大值和最小值.