(本小题满分15分)
设,椭圆方程为
,抛物线方程为
.如图4所示,过点
作
轴的平行线,与抛物线在第一象限的交点为
,已知抛物线在点
的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
已知圆满足:
①截y轴所得弦长为2;
②被x轴分成两段圆弧,其弧长的比为.
求在满足条件①②的所有圆中,使代数式取得最小值时,圆的方程.
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线
相切.
求:(1)求圆的方程;
(2)设直线与圆相交于
两点,求实数
的取值范围;
(3)在(2)的条件下,是否存在实数,使得过点
的直线
垂直平分弦
?
若存在,求出实数的值;若不存在,请说明理由.
已知函数对任意实数
恒有
且当
时,有
且
.
(1)判断的奇偶性;
(2)求在区间
上的最大值;
(3)解关于的不等式
.
已知点在圆
上运动,
,点
为线段MN的中点.
(1)求点的轨迹方程;
(2)求点到直线
的距离的最大值和最小值..
如图,四棱锥P-ABCD的底面是矩形,侧面PAD丄底面ABCD,..
(1)求证:平面PAB丄平面PCD
(2)如果AB=BC=2,PB=PC=求四棱锥P-ABCD的体积.