游客
题文

(本小题满分16分)
在直角坐标系xOy中,椭圆C1=1(ab>0)的左、右焦点分别为F1F2F2也是抛物线C2的焦点,点MC1C2在第一象限的交点,且|MF2|=
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足,直线lMN,且与C1交于AB两点,若,求直线l的方程.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

如图四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCDABAA1.

(1)证明:平面A1BD∥平面CD1B1
(2)求三棱柱ABDA1B1D1的体积.

直线l与椭圆+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=,又椭圆经过点(,1),O为坐标原点.
(1)求椭圆的方程.
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”的方程.
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.

已知椭圆E:+=1(a>b>0)的离心率e=,a2与b2的等差中项为.
(1)求椭圆E的方程.
(2)A,B是椭圆E上的两点,线段AB的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围.

如图,已知椭圆C:+y2=1(a>1)的上顶点为A,离心率为,若不过点A的动直线l与椭圆C相交于P,Q两点,且·=0.

(1)求椭圆C的方程.
(2)求证:直线l过定点,并求出该定点N的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号