游客
题文

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。

(1)求直线AC与PB所成角的余弦值;
(2)求面AMC与面PMC所成锐二面角的大小的余弦值。

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为的直线经过点(0,1),与椭圆交于不同两点
(1)求椭圆的标准方程;
(2)当椭圆的右焦点在以为直径的圆内时,求的取值范围.

三棱柱中,侧棱与底面垂直, 分别是的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求三棱锥的体积.

已知函数f(x)=ax-1-ln x(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在x=1处取得极值,不等式f(x)≥bx-2对∀x∈(0,+∞)恒成立,求实数b的取值范围;
(3)当x>y>e-1时,证明不等式exln(1+y)>eyln(1+x).

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,求的值;
(3)直线交椭圆两不同点,轴的射影分别为,若点满足,证明:点在椭圆上.

如图,四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=CD,E是PC的中点.
(1)证明PA∥平面BDE;
(2)求二面角B﹣DE﹣C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号