(本小题满分14分)设圆,将曲线上每一点的纵坐标压缩到原来的
,对应的横坐标不变,得到曲线C.经过点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),
交曲线C于A、B两个不同点.
(1)求曲线的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.
如图,AB是半径为1的圆的一条直径,C是此圆上任意一点,作射线AC,在AC上存在点P,使得AP·AC=1,以A为极点,射线AB为极轴建立极坐标系.
(1)求以AB为直径的圆的极坐标方程;
(2)求动点P的轨迹的极坐标方程;
(3)求点P的轨迹在圆内部分的长度.
求极坐标方程分别为ρ=cosθ与ρ=sinθ的两个圆的圆心距.
求极坐标方程ρcosθ=2sin2θ表示的曲线.
化极坐标方程ρ2cosθ-ρ=0为直角坐标方程.
已知函数f(x)=(2cos2x-1)sin2x+cos4x(1)求f(x)的最小正周期及最大值。
(2)设A,B,C为△ABC的三个内角,若cosB=,f(
)=-
,且角A为钝角,求sinC