如图,在五面体中,
平面
,
,
,
为
的中点,
.
(1)求异面直线与
所成角的大小;
(2)证明:平面平面
;
(3)求与平面
所成角的正弦值.
已知函数.
(Ⅰ)若函数在
,
处取得极值,求
,
的值;
(Ⅱ)若,函数
在
上是单调函数,求
的取值范围.
已知椭圆E:=1(a>b>o)的离心率e=
,且经过点(
,1),O为坐标原点。
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线
x=-4在x轴上方的一点,过M作圆O的两条切线,
切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
右图为一组合体,其底面为正方形,
平面
,
,且
(Ⅰ)求证:平面
;
(Ⅱ)求四棱锥的体积;
(Ⅲ)求该组合体的表面积.
已知递增的等比数列满足
是
的等差中项。
(Ⅰ)求数列的通项公式;
(Ⅱ)若是数列
的前
项和,求
选修4—5;不等式选讲.
设函数.
(Ⅰ)解不等式;
(Ⅱ)对于实数,若
,求证
.