(本小题满分14分)对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.(Ⅰ)判断函数和是否为R上的“平底型”函数?并说明理由;(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式 对一切R恒成立,求实数的取值范围;(Ⅲ)若函数是区间上的“平底型”函数,求和的值.
已知函数, . (1)求函数的最大值和最小值; (2)设函数在上的图象与轴的交点从左到右分别为,图象的最高点为, 求与的夹角的余弦.
设函数, (1)求函数的极大值; (2)记的导函数为,若时,恒有成立,试确定实数的取值范围.
已知一条曲线在轴右边,上每一点到点的距离减去它到轴距离的差都等于1. (1)求曲线C的方程; (2)若过点M的直线与曲线C有两个交点,且,求直线的斜率.
已知函数,函数. (1)判断函数的奇偶性; (2)若当时,恒成立,求实数的最大值.
已知数列及其前项和满足:(,). (1)证明:设,是等差数列;(2)求及.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号