(本题满分12分)
某桶装水经营部每天的房租,人员工资等固定成本为200元,每桶水的进价是5元。销售单价与日均销售的关系如下表所示
销售单价(元) |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
日均销售量(桶) |
480 |
440 |
400 |
360 |
320 |
280 |
240 |
设在进价基础上增加x元后,日均销售利润为y元。
(1)写出日均销售量P与x的函数关系式,标出定义域;
(2)请根据以上数据作出分析:这个经营部怎样定价才能获得最大利润?
已知△ABC中,,
,且
.
(1)求∠B的值;
(2)若点E,P分别在边AB,BC上,且AE=4,AP⊥CE,求AP的长;
已知等差数列满足
.
(1)求的通项公式;
(2)求的前
项和
;
(3)若成等比数列,求
的值.
已知函数.
(1)求值;
(2)求的最小值正周期;
(3)求的单调递增区间.
已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求
的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证
.
给定椭圆.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.