游客
题文

为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计。请你根据表中信息解答下列问题:
(1)若用系统抽样的方法抽取容量为50的一个样本,则写出表中的①②③④⑤填的数据;
(2)作出频率分布直方图;
(3)试估计参加这次竞赛的学生的平均成绩

分组
频数
频率
60.5~70.5

0.16
70.5~80.5
10

80.5~90.5
18
0.36
90.5~100.5


合计
50

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分14分)如图,在四棱锥中,底面为菱形,⊥平面的中点,的中点,

求证:(Ⅰ)平面⊥平面;(Ⅱ)//平面.

)已知,不等式的解集为M.
(I)求M;
(II)当时,证明:.

如图,AB是的弦,C、F是上的点,OC垂直于弦AB,过点F作的切线,交AB的延长线于D,连结CF交AB于点E.
(I) 求证:
(II)若BE = 1,DE = 2AE,求 DF 的长.

已知函数,其中为参数,且
(I)当时,判断函数是否有极值,说明理由;
(II)要使函数的极小值大于零,求参数的取值范围;
(III)若对(II)中所求的取值范围内的任意参数,函数在区间(2a-1,a)内都是增函数,求实数a的取值范围.

已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。
(Ⅰ)求椭圆E的标准方程;
 (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号