(本小题满分12分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为
(I)求该生至少有1门课程取得优秀成绩的概率;(II)求p,q的值;(III)求数学期望Eξ.
过双曲线C:的右焦点F作直线l与双曲线C交于P、Q两点,,求点M的轨迹方程.
知抛物线C:y2=4x,若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;
已知P、Q是椭圆C:上的两个动点,是椭圆上一定点,是其左焦点,且|PF|、|MF|、|QF|成等差数列。 求证:线段PQ的垂直平分线经过一个定点A;
已知点和,动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线交于D、E两点,求线段DE的长.
已知椭圆与直线相交于两点. (1)当椭圆的半焦距,且成等差数列时,求椭圆的方程; (2)在(1)的条件下,求弦的长度;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号