(本小题满分16分)
如图,已知抛物线的焦点为
,
是抛物线上横坐标为8且位于
轴上方的点.
到抛物线准线的距离等于10,过
作
垂直于
轴,垂足为
,
的中点为
(
为坐标原点).
(Ⅰ)求抛物线的方程;
(Ⅱ)过作
,垂足为
,求点
的坐标;
(Ⅲ)以为圆心,4为半径作圆
,点
是
轴上的一个动点,试讨论直线
与圆
的位置关系.
某企业招聘工作人员,设置、
、
三组测试项目供参考人员选择,甲、乙、丙、丁、戊五人参加招聘,其中甲、乙两人各自独立参加
组测试,丙、丁两人各自独立参加
组测试.已知甲、乙两人各自通过测试的概率均为
,丙、丁两人各自通过测试的概率均为
.戊参加
组测试,
组共有6道试题,戊会其中4题.戊只能且必须选择4题作答,答对3题则竞聘成功.
(Ⅰ)求戊竞聘成功的概率;
(Ⅱ)求参加组测试通过的人数多于参加
组测试通过的人数的概率;
(Ⅲ)记、
组测试通过的总人数为
,求
的分布列和期望.
已知平面向量,
,
,其中
,且函数
的图象过点
.
(1)求的值;
(2)将函数图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数
的图象,求函数
在
上的最大值和最小值.
四棱锥中,
⊥底面
,
,
,
.
(Ⅰ)求证:⊥平面
;
(Ⅱ)若侧棱上的点
满足
,求三棱锥
的体积.
一个多面体的直观图、正视图、侧视图、俯视图如图所示,M、N分别为A1B、B1C1的中点.
(1)求证:MN//平面ACC1A1;
(2)求证:MN^平面A1BC.
如图,四棱锥的底面是正方形,
底面
,
是
上一点
(1)求证:平面平面
;
(2)设,
,求点
到平面
的距离.