(满分14分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。(1)求的值及的表达式。(2)隔热层修建多厚时,总费用达到最小,并求最小值。
设全集若(UA)(UB)求。
(本小题满分14分) 已知数列的前n项和与通项之间满足关系 (I)求数列的通项公式; (II)设求 (III)若,求的前n项和
(本小题13分) 定义在R上的函数满足:如果对任意,都有,则称是R上凹函数。已知二次函数()。 (1)求证:当时,函数为凹函数; (2)如果时,,试求a的取值范围。
(本小题满分12分) 设奇函数对任意都有求和的值;数列满足:=+,数列是等差数列吗?请给予证明;
(本小题满分12分) 已知向量,且与向量的夹角为,其中是的内角 (1)求角的大小 (2)求的取值范围
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号