在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B’,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向最大改变了106°角,求磁感应强度B’的范围是多大?(tan53°=4/3)
如图所示,在y>0的区域内有沿y轴正方向的匀强电场,在y<0的区域内有垂直坐标平面向里的匀强磁场。一电子(质量为m、电量为e)从y轴上A点以沿x轴正方向的初速度v0开始运动。当电子第一次穿越x轴时,恰好到达C点;当电子第二次穿越x轴时,恰好到达坐标原点;当电子第三次穿越x轴时,恰好到达D点。C、D两点均未在图中标出。已知A、C点到坐标原点的距离分别为d、2d。不计电子的重力。求
(1)电场强度E的大小;
(2)磁感应强度B的大小;
(3)电子从A运动到D经历的时间t.
甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。求甲乙两车各自在这两段时间间隔内走过的总路程之比。
如图所示,劲度系数k=20.0N/m的轻质水平弹簧右端固定在足够长的水平桌面上,左端系一质量为M=2.0kg的小物体A,A左边所系轻细线绕过轻质光滑的定滑轮后与轻挂钩相连。小物块A与桌面的动摩擦因数μ=0.15,设最大静摩擦力等于滑动摩擦力。现将一质量m=1.0kg的物体B挂在挂钩上并用手托住,使滑轮右边的轻绳恰好水平伸直,此时弹簧处在自由伸长状态。释放物体B后系统开始运动,取g=10m/s2。
(1)求刚释放时物体B的加速度a;
(2)求小物块A速度达到最大时弹簧的伸长量x1;
(3)已知弹簧弹性势能,x为弹簧形变量,求整个过程中小物体A克服摩擦力年做的总功W。
如图,板长为L、间距为d的平行金属板水平放置,两板间所加电压大小为U,足够大光屏PQ与板的右端相距为a,且与板垂直。一带正电的粒子以初速度0沿两板间的中心线射入,射出电场时粒子速度的偏转角为37°。已知sin37°=0.6,cos37°=0.8,不计粒子的重力。
⑴求粒子的比荷q/m;
⑵若在两板右侧MN、光屏PQ间加如图所示的匀强磁场,要使粒子不打在光屏上,求磁场的磁感应强度大小B的取值范围;
⑶若在两板右侧MN、光屏PQ间仅加电场强度大小为E0、方向垂直纸面向外的匀强电场。设初速度方向所在的直线与光屏交点为O点,取O点为坐标原点,水平向右为x正方向,垂直纸面向外为z轴的正方向,建立如图所示的坐标系,求粒子打在光屏上的坐标(x,y,z)。
一辆汽车从静止开始匀加速开出,然后保持匀速运动,最后匀减速运动,直到停止.下表给m了不同时刻汽车的速度:
(l)汽车从开出到停止共经历的时间是多少?]
(2)汽车在全程中的平均速度是多少?