船在400米宽的河中横渡,河水流速是2m/s,船在静水中的航速是4m/s,试求:
(1)要使船到达对岸的时间最短,船头应指向何处?最短时间是多少?航程是多少?
(2)要使船航程最短,船头应指向何处?最短航程为多少?渡河时间又是多少?
用天文望远镜长期观测,人们在宇宙中发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质存在的形式和分布有了较深刻的认识,双星系统是由两个星体构成,其中每个星体的线度都小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理,现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动。
(1)计算该双星系统的运动周期T计算。
(2)若实验上观测到的运动周期为T观测,且T观测:T计算=1:(N>1),为了解释T观测与T计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质,作为一种简化模型,我们假定在这两个星体边线为直径的球体内均匀分布着暗物质,而不考虑其它暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质的密度。
如图所示,固定斜面AB、CD与竖直光滑圆弧BC相切于B、C点,两斜面的倾角θ=37°,圆弧BC半径R=2m。一质量m="1" kg的小滑块(视为质点)从斜面AB上的P点由静止沿斜面下滑,经圆弧BC冲上斜面CD。已知P点与斜面底端B间的距离L1="6" m,滑块与两斜面间的动摩擦因数均为μ=0.25,g=10m/s2。求;
(1)小滑块第1次经过圆弧最低点E时对圆弧轨道的压力;
(2)小滑块第1次滑上斜面CD时能够到达的最远点Q(图中未标出)距C点的距离;
(14分)如图所示,在坐标系xOy中,第一象限内充满着两个匀强磁场a和b,OP为分界线,倾角为37°,在区域a中,磁感应强度为2B,方向垂直于纸面向里;在区域b中,磁感应强度为B,方向垂直于纸面向外,P点坐标为(4L,3L).一质量为m、电荷量为q的带正电的粒子从P点沿y轴负方向射入区域b,经过一段时间后,粒子恰能经过原点O,不计粒子重力.(sin37°=0.6,cos37°=0.8)求:
(1)粒子从P点运动到O点的时间最少是多少?
(2)粒子运动的速度可能是多少?
如图所示,粒子源O产生初速度为零、电荷量为q、质量为m的正离子,被电压为的加速电场加速后通过直管,在到两极板等距离处垂直射入平行板间的偏转电场,两平行板间电压为2
。离子偏转后通过极板MN上的小孔S离开电场。已知ABC是一个外边界为等腰三角形的匀强磁场区域,磁场方向垂直纸面向外,边界AB=AC=L,
,离子经过一段匀速直线运动,垂直AB边从AB中点进入磁场。(忽略离子所受重力)
试求:
(1)若磁场的磁感应强度大小为,离子在磁场中做圆周运动的半径;
(2)若离子能从AC边穿出,试求磁场的磁感应强度大小的范围。
如图所示,在xOy坐标系中,x轴上N点到O点的距离是12cm,虚线NP与x轴负向的夹角是30°.第Ⅰ象限内NP的上方有匀强磁场,磁感应强度B=1T,第IV象限有匀强电场,方向沿y轴正向.一质量m=8×10-10kg.电荷量q=1×10-4C带正电粒子,从电场中M(12,-8)点由静止释放,经电场加速后从N点进入磁场,又从y轴上P点穿出磁场.不计粒子重力,取=3
求:
(1)粒子在磁场中运动的速度v;
(2)粒子在磁场中运动的时间t;
(3)匀强电场的电场强度E.