已知向量
(1)若,求
的值;
(2)记,
在
中,角A、B、C的对边分别是
,且满
,求
的取值范围。
(本小题满分12分)
设定义在区间上的函数
的图象为
,
是
上的任意一点,
为坐标原点,设向量
=
,
,
,当实数λ满足x="λ" x1+(1-λ) x2时,记向量
=λ
+(1-λ)
.定义“函数
在区间
上可在标准
下线性近似”是指 “
恒成立”,其中
是一个确定的正数.
(1)求证:三点共线;
(2)设函数在区间[0,1]上可在标准
下线性近似,求
的取值范围;
(3)求证:函数在区间
上可在标准
下线性近似.
(参考数据:=2.718,
)
(本小题满分12分)
如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆与椭圆
相似,且椭圆
的一个短轴端点是抛物线
的焦点.
(Ⅰ)试求椭圆的标准方程;
(Ⅱ)设椭圆的中心在原点,对称轴在坐标轴上,直线
与椭圆
交于
两点,且与椭圆
交于
两点.若线段
与线段
的中点重合,试判断椭圆
与椭圆
是否为相似椭圆?并证明你的判断.
(本小题满分12分)
某建筑物的上半部分是多面体, 下半部分是长方体
(如图). 该建筑物的正视图和侧视图(如图), 其中正(主)视图由正方形和等腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而成.
(Ⅰ)求直线与平面
所成角的正弦值;
(Ⅱ)求二面角的余弦值;
(Ⅲ)求该建筑物的体积.
(本小题满分12分)
2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 |
PM2.5(微克/立方米) |
频数(天) |
频率 |
第一组 |
(0,15] |
4 |
0.1 |
第二组 |
(15,30] |
12 |
0.3 |
第三组 |
(30,45] |
8 |
0.2 |
第四组 |
(45,60] |
8 |
0.2 |
第三组 |
(60,75] |
4 |
0.1 |
第四组 |
(75,90) |
4 |
0.1 |
(1)写出该样本的众数和中位数(不必写出计算过程);
(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求
的分布列及数学期望
.
(本小题满分12分)
在中,角
的对边分别为
不等式
对于一切实数
恒成立.
(Ⅰ)求角C的最大值.
(Ⅱ)当角C取得最大值时,若,求
的最小值.