在图甲中,电源的电动势E=9.0V,电源内电阻可忽略不计;G为小量程的电流表,电流表内阻Rg保持不变,R为热敏电阻,其电阻值与温度的变化关系如图乙的R-t图线所示。闭合开关S,当R的温度等于20oC时,电流表示数I1=2mA,则当电流表的示数I2=3.6mA时,热敏电阻R的温度为多少?
如图所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧一段弯成半径为的四分之一圆弧,圆弧导轨的左、右两段处于高度相差
的水平面上。以弧形导轨的末端点O为坐标原点,水平向右为x轴正方向,建立Ox坐标轴。圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图3所示;磁场B(t)和B(x)的方向均竖直向上。在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端。已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。
(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;
(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;
(3)如果根据已知条件,金属棒滑行到x=x1,位置时停下来,
a.求金属棒在水平轨道上滑动过程中遁过导体棒的电荷量q;
b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置。
飞行时间质谱仪可以根据带电粒子的飞行时间对气体分子进行分析。如图所示,在真空状态下,自脉冲阀P喷出微量气体,经激光照射产生不同正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的方形区域,然后到达紧靠在其右侧的探测器。已知极板a、b间的电压为U0,间距为d,极板MN的长度和间距均为l。不计离子重力及经过a板时的初速度。
(1)若M、N板间无电场和磁场,请推导出离子从a板到探测器的飞行时间,与比荷k=q/m,q和m分别为离子的电荷量和质量)的关系式;
(2)若在M、N间只加上偏转电压U1,请论证说明不同正离子的轨迹是否重合;
(3)若在M、N间只加上垂直于纸面的匀强磁场。已知进入a、b间的正离子有一价和二价的两种,质量均为m,元电荷为e。要使所有正离子均能通过方形区域从右侧飞出,求所加磁场的磁感应强度的最大值Bm。
如图所示,一质量M=2.0kg的长木板AB静止在水平面上,木板的左侧固定一半径R=0.60m的四分之一圆弧形轨道,轨道末端的切线水平,轨道与木板靠在一起,且末端高度与木板高度相同。现在将质量m=l.0kg的小铁块(可视为质点)从弧形轨道顶端由静止释放,小铁块到达轨道底端时的速度v0=3.0m/s,最终小铁块和长木板达到共同速度。忽略长木板与地面间的摩擦。取重力加速度g=l0m/s2。求
(1)小铁块在弧形轨道末端时所受支持力的大小F;
(2)小铁块在弧形轨道上滑动过程中克服摩擦力所做的功Wf;
(3)小铁块和长木板达到的共同速度v。
如图所示, A、B两物体的质量都为m,拉A物体的细线与水平方向的夹角为30°时处于静止状态,不考虑摩擦力,设弹簧的劲度系数为k.若悬线突然断开后,A在水平面上做周期为T的简谐运动,当B落地时,A恰好将弹簧压缩到最短,求:
(1)A振动时的振幅;
(2)B落地时的速度.
如图甲所示是一个单摆振动的情形,O是它的平衡位置,B、C是摆球所能到达的最远位置.设摆球向右方向运动为正方向.图乙所示是这个单摆的振动图象.根据图象回答:(取π2=10)
(1)单摆振动的频率是多大?
(2)开始时刻摆球在何位置?
(3)若当地的重力加速度为10 m/s2,试求这个摆的摆长是多少?