已知集合,
,若
,求实数
、
的
值.
设数列的前项n和为
,若对于任意的正整数n都有
.
(1)设,求证:数列
是等比数列,并求出
的通项公式。
(2)求数列的前n项和
.
已知椭圆的中心在原点,它的左右两个焦点分别为
,过右焦点
且与
轴垂直的直线
与椭圆
相交,其中一个交点为
(1) 求椭圆的方程。
(2)设椭圆的一个顶点为
直线
交椭圆
于另一点
,求
的面积.
如图所示的长方体中,底面
是边长为
的正方形,
为
与
的交点,
,
是线段
的中点.请建立空间直角坐标系解决以下问题:
(1)求证:平面
;
(2)求证:平面
;
(3)求二面角的大小.
在中,角
的对边分别为
,
,
的面积为
. (1)求
的值;(2)求
的值.
已知函数的定义域为
,
的定义域为
.
(1)求.
(2)记,若
是
的必要不充分条件,求实数
的取值范围。