在半径R="5000" km的某星球表面,宇航员做了如下实验,实验装置如下图甲所示.竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m="0.2" kg的小球,从轨道AB上高H处的某点静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H 的大小,可测出相应的F大小,F随H 的变化关系如图乙所示,求:
(1)该星球表面的重力加速度;
(2)该星球的第一宇宙速度.
如图所示,水平光滑轨道AB与竖直半圆形光滑轨道在B点平滑连接,AB段长x=10m,半圆形轨道半径R=2.5m。质量m=0.10kg的小滑块(可视为质点)在水平恒力F作用下,从A点由静止开始运动,经B点时撤去力F,小滑块进入半圆形轨道,沿轨道运动到最高点C,从C点水平飞出。重力加速度g取10m/s2。
(1)若小滑块从C点水平飞出后又恰好落在A点。求:
①滑块通过C点时的速度大小;
②滑块刚进入半圆形轨道时,在B点对轨道压力的大小;
(2)如果要使小滑块能够通过C点,求水平恒力F应满足的条件。
在物理学中,常常用等效替代、类比、微小量放大等方法来研究问题。如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了万有引力常量G的数值,图所示是卡文迪许扭秤实验示意图。卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G的数值及其他已知量,就可计算出地球的质量,卡文迪许也因此被誉为第一个称量地球的人。
(1)若在某次实验中,卡文迪许测出质量分别为m1、m2相距为r的两个小球之间引力的大小为F,求万有引力常量G;
(2)若已知地球半径为R,地球表面重力加速度为g,万有引力常量为G,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式。
如图所示,倾角θ=37°的光滑斜面固定在地面上,斜面的长度L=3.0m。质量m=0.10kg的滑块(可视为质点)从斜面顶端由静止滑下。已知sin37°=0.60,cos37°=0.80,空气阻力可忽略不计,重力加速度g取10m/s2。求:
(1)滑块滑到斜面底端时速度的大小;
(2)滑块滑到斜面底端时重力对物体做功的瞬时功率大小;
(3)在整个下滑过程中重力对滑块的冲量大小。
如图所示,质量m=0.5kg的物体放在水平面上,在F=3.0N的水平恒定拉力作用下由静止开始运动,物体发生位移x=4.0m时撤去力F,物体在水平面上继续滑动一段距离后停止运动。已知物体与水平面间的动摩擦因数μ=0.4,重力加速度g取10m/s2。求:
(1)物体在力F作用过程中加速度的大小;
(2)撤去力F的瞬间,物体速度的大小;
(3)撤去力F后物体继续滑动的时间。
如图甲所示,三个物体A、B、C静止放在光滑水平面上,物体A、B用一轻质弹簧连接,并用细线拴连使弹簧处于压缩状态,三个物体的质量分别为mA=0.1kg、mB=0.2kg和mC=0.1kg。现将细线烧断,物体A、B在弹簧弹力作用下做往复运动(运动过程中物体A不会碰到物体C)。若此过程中弹簧始终在弹性限度内,并设以向右为正方向,从细线烧断后开始计时,物体A的速度‒时间图象如图18乙所示。求:
(1)从细线烧断到弹簧恢复原长运动的时间;
(2)弹簧长度最大时弹簧存储的弹性势能;
(3)若弹簧与物体A、B不连接,在某一时刻使物体C以v0的初速度向右运动,它将在弹簧与物体分离后和物体A发生碰撞,所有碰撞都为完全弹性碰撞,试求在以后的运动过程中,物体C与物体A能够发生二次碰撞,物体C初速度v0的取值范围。(弹簧与物体分离后,迅速取走,不影响物体后面的运动)