(本小题满分10分)
某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数
的关系(图象如下图所示).
(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,
①求S关于的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
(12分) 求函数
(本小题满分10分)已知构成某系统的元件能正常工作的概率为p(0<p<1),且各个元件能否正常工作是相互独立的.今有2n(n大于1)个元件可按如图所示的两种联结方式分别构成两个系统甲、乙.
(1)试分别求出系统甲、乙能正常工作的概率p1,p2;
(2) 比较p1与p2的大小,并从概率意义上评价两系统的优劣.
(本小题满分10分)如图,在四棱锥OABCD中,底面ABCD是边长为1的菱形,∠ABC=45°,OA⊥底面ABCD,OA=2,M为OA的中点.
(1) 求异面直线AB与MD所成角的大小;
(2) 求平面OAB与平面OCD所成二面角的余弦值.
选修45:不等式选讲
已知a、b、c是正实数,求证:++≥++.
选修44:坐标系与参数方程
求曲线C1:被直线l:y=x-所截得的线段长.