(本小题满分分)
在平面直角坐标系xoy中,已知四边形OABC是平行四边形,,点M是OA的中点,点P在线段BC上运动(包括端点),如图
(Ⅰ)求∠ABC的大小;
(II)是否存在实数λ,使?若存在,求出满足条件的实数λ的取值范围;若不存在,请说明理由。
(1)在10000张有奖储蓄的奖券中,设有1个一等奖,5个二等奖,10个三等奖,从中买一张奖券,求中奖的概率;
(2)一批产品共10件,其中有两件次品,现随机地抽取5件,求所取5件中至多有一件次品的概率.
已知为坐标原点,
,
(
,
是常数),若
.
(1)求关于
的函数关系式
;
(2)若的最大值为
,求
的值;
(3)利用(2)的结论,用“五点法”作出函数在长度为一个周期的闭区间上的简图,并指出函数
的单调区间.
若函数f(x)=sin2ax-sinaxcosax(a>0)的图象与直线y=m相切,相邻切点之间的距离为
.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈,求点A的坐标.
已知二次函数满足条件:
①;②
的最小值为
。
(1)求函数的解析式;
(2)设数列的前
项积为
,且
,求数列
的通项公式;
(3)在(2)的条件下,若是
与
的等差中项,试问数列
中第几项的值最小?求出这个最小值。
已知
(1)化简;
(2)若是第三象限角,且
,求
的值;
(3)若,求
的值。