(本小题满分12分)
如图,测量塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,现测得∠BCD=15°,∠BDC=30°,CD=30米,(1)若在C处测得塔顶A的仰角为60°,
求塔高AB是多少? (2)若在C处测得塔顶A的仰角为(其中
),
求函数的值域。
设函数,其中角
的顶点与坐标原点重合,始边与
轴非负半轴重合,
终边经过点,且
.
(1)若点的坐标为
,求
的值;
(2)若点为平面区域
上的一个动点,试确定角
的取值范围,并求函数
的最小值和最大值.
已知函数.
(1)求的最小正周期和最大值;
(2)若为锐角,且
,求
的值.
设函数.
(1)求函数的单调区间
(2)若函数有两个零点
、
,且
,求证:
.
已知函数,
,其中
为常数,
,函数
和
的图像在它们与坐标轴交点处的切线分别为
、
,且
.
(1)求常数的值及
、
的方程;
(2)求证:对于函数和
公共定义域内的任意实数
,有
;
(3)若存在使不等式
成立,求实数
的取值范围.
在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到
辆/千米时,造成堵塞,此时车流速度为
;当
时,车流速度为
千米/小时.研究表明:当
时,车流速度
是车流密度
的一次函数.
(1)当时,求函数
的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时)