甲、乙两个同学在直跑道上练习4×100m接力跑,如下图所示,他们在奔跑时有相同的最大速度.乙从静止开始全力奔跑需跑出25m才能达到最大速度,这一过程可看作匀变速运动.现在甲持棒以最大速度向乙奔来,乙在接力区伺机全力奔出.若要求乙接棒时奔跑达到最大速度的80%,则:
(1)乙在接力区需奔出多少距离?
(2)乙应在距离甲多远时起跑?
如图所示,在一端封闭的U形管中用水银柱封一段空气柱L,当空气柱的温度为14℃时,左臂水银柱的长度h1=10cm,右臂水银柱长度h2=7cm,气柱长度L=15cm;将U形管放入100℃水中且状态稳定时,h1变为7cm。分别写出空气柱在初末两个状态的气体参量,并求出末状态空气柱的压强和当时的大气压强(单位用cmHg)。
在如图所示的空间坐标系中,y轴的左边有一匀强电场,场强大小为E,场强
方向跟y轴负向成30°,y的右边有一垂直纸面向里的匀强磁场,磁感应强度为B.现有一质子,以一定的初速度v0,在x 轴上坐标为x0=10cm处的A点,第一次沿x轴正方向射入磁场,第二次沿x轴负方向射入磁场,回旋后都垂直于电场方向射入电场,最后又进入磁场。求:
(1)质子在匀强磁场中的轨迹半径R;
(2)质子两次在磁场中运动时间之比
(3)若第一次射入磁场的质子经电场偏转后,恰好从第二次射入磁场的质子进入电场的位置再次进入磁场,试求初速度v0和电场强度E、磁感应强度B之间需要满足的条件。
一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB的底
端等高对接,如图所示。已知小车质量M=3.0kg,长L=2.06m,圆弧轨道半径R=0.8m。现将一质量m=1.0kg的小滑块,由轨道顶端A点无初速释放,滑块滑到B端后冲上小车。滑块与小车上表面间的动摩擦因数。(取g=10m/s2)试求:
(1)滑块到达B端时,轨道对它支持力的大小;
(2)小车运动1.5s时,车右端距轨道B端的距离;
(3)小车产生的内能
如图所示,把中心带有小孔的平行放置的两个圆形金属板M和N,连接在电压恒为U的直流电源上.一个质量为m,电荷量为q的微观正粒子,以近似于静止的状态,从M板中心的小孔进入电场,然后又从N板中心的小孔穿出,再垂直进入磁感应强度为B的足够宽广的匀强磁场中运动(忽略重力的影响).那么:
(1)该粒子从N板中心的小孔穿出时的速度有多大?
(2)若圆形板N的半径为R,如果该粒子返回后能够直接打在圆形板N的右侧表面上,那么该磁场的磁感应强度B至少为多大?
如图所示,宽度为L=0.40 m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=2.0Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B="0.40" T。一根质量为m=0.1kg的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v="0.50" m/s,在运动过程中保持导体棒与导轨垂直。求:
(1)在闭合回路中产生的感应电流的大小;
(2)作用在导体棒上的拉力的大小;
(3)当导体棒移动50cm时撤去拉力,求整个运动过程中电阻R上产生的热量。