宇宙中存在一些质量相等且离其他恒星
较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用,设每个星体的质量均为m,四颗星稳定地分布在边长为a的正方形的四个顶点上,已知这四颗星均围绕正方形对角线的交点做匀速圆周运动,引力常量为G,试求:星体做匀速圆周运动的周期.
把一个电荷量为q=5×10-9 C的正电荷从距电场无穷远处移到电场中M点,电荷克服电场力做功WM=6.0×10-3 J,如果把该点电荷从距电场无穷远处移到电场中N点,电荷克服电场力做功WN=3.6×10-3 J.取无穷远处为零电势点,求:
(1)M、N点的电势是多少?
(2)M、N点的电势差是多少?把该点电荷从M点移到N点电场力做功是多少?
如图甲所示的螺线管,匝数n=1500匝,横截面积S=20cm2,电阻r=1.5Ω,与螺线管串联的外电阻R1=3.5Ω,R2=25Ω,方向向右穿过螺线管的匀强磁场,磁感应强度按图乙所示规律变化,试计算电阻R2的电功率和a、b两点的电势差.
如图所示,光滑绝缘细杆竖直放置,细杆右侧距杆0.3m处有一固定的点电荷Q,A、B是细杆上的两点,点A与Q、点B与Q的连线与杆的夹角均为
=37°。中间有小孔的带电小球穿在绝缘细杆上滑下,通过A点时加速度为零,取g=10m/s2,求小球下落到B点时的加速度大小。
如图,靠正电荷导电的矩形薄片长l=4.0×10-2m,高h=1.0×10-2m;匀强磁场垂直于薄片向外,磁感应强度B=2.0T.若P、Q间通入I=3.0A电流后,M、N间产生稳定的电势差,薄片内正电荷定向移动的平均速率v=5.0×10-4m/s。
(1)求矩形薄片受的安培力大小
(2)判断M、N电势的高低并求出M、N间的电压。
(如图所示,在光滑水平地面上有一质量为2m的长木板,其左端放有一质量为m的重物(可视为质点),重物与长木板之间的动摩擦因数为
。开始时,长木板和重物都静止,现在给重物以初速度v0,设长木板撞到前方固定的障碍物前,长木板和重物的速度已经相等。已知长木板与障碍物发生弹性碰撞,为使重物始终不从长木板上掉下来,求长木板的长度L至少为多少?(重力加速度为g)