(本小题满分12分)
在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.
(1) 写出点M的坐标;
(2) 当四边形CMQP是以MQ,PC为腰的梯形时.
① 求t关于x的函数解析式和自变量x的取值范围;
② 当梯形CMQP的两底的长度之比为1:2时,求t的值.
如图,△是等边三角形,点
、
分别是
、
的延长线上的点,且
,
的延长线交
于点
.
(1)求证:;
(2)求的度数.
如图,在等腰RT△中,
,
,点
是斜边
的中点,点
、
分别为
、
边上的点,且
.
(1)判断与
的大小关系,并说明理由;
(2)若,
,求△
的面积.
.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.
如图所示,一根旗杆升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;
(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC
的长最短,这个最短长度是 .