游客
题文

如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).

(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

先化简,再求值:,其中a是方程的解.

全善学校为了解初三学生上学的方式,采用随机抽样的方式进行了问卷调查.分别有:乘公共交通工具(记为A),步行(记为B),乘私家车(记为C),其他方式(记为D).统计后,制成条形统计图和扇形统计图,观察图形的信息,回答下列问题:

(1)请补全条形统计图,并计算m=_______乘公共交通工具(记为A)对应的圆心角的度数为_____度;
(2)已知被抽查的乘私家车学生中只有一名男生,现从被抽查的乘私家车的同学中随机抽取两名来谈谈节能减排,请你用列表或画树状图的方法求出所选的两名学生刚好是一名男生和一名女生的概率.

(本题12分)如图,平面直角坐标系中,O为坐标原点,抛物线经过两点,与y轴交于点D,与x轴交于另一点B.点E坐标为,点P是线段BO上的一个动点,从点B开始以1个单位每秒的速度沿BO向终点O运动;

(1)求此抛物线的解析式;
(2)设运动时间为t秒,直线PE扫过四边形ABCD的面积为S,当直线PE与线段BC有交点时,求S关于t的函数关系式;
(3)能否将△OEB绕平面内某点旋转90°后使得△OEB的两个顶点落在抛物线上?若能,请直接写出旋转中心的坐标;若不能,请说明理由.

(本题10分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是

探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

(本题10分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数在第一象限内的图象经过点D,与AB相交于点E,且点B(4,2).

(1)求反比例函数的关系式;
(2)求四边形OAED的面积;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,若,求直线GH的函数关系式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号