国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价(万元)之间满足关系式
,月产量x(套)与生产总成本
(万元)存在如图所示的函数关系.
(1)直接写出与x之间的函数关系式;
(2)求月产量x的范围;
(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?
已知二次函数y=+4x+k-1.
(1)若抛物线与x轴有两个不同的交点,求k的取值范围;
(2)若抛物线的顶点在x轴上,求k的值.
如图,已知ABCD的周长为8 cm,∠B=30°,若边长AB为x cm.
(1)写出平行四边形ABCD的面积y(cm2)与x(cm)的函数关系式,并求自变量x的取值范围.
(2)当x取什么值时,y的值最大?并求出最大值.
已知二次函数y=+4.
(1)写出抛物线的开口方向、顶点坐标和对称轴.
(2)画出此函数的图象,并说出此函数图象与y=的图象的关系.
已知函数y=
(1)若这个函数是一次函数,求m的值;
(2)若这个函数是二次函数,则m的值应怎样?
已知,如图,二次函数y=ax2+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:对称.
(1)求A、B两点坐标,并证明点A在直线l上;
(2)求二次函数解析式;
(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.