如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为 ;用含t的式子表示点P的坐标为 ;(3分)
(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)
如图,某居民小区内两楼之间的距离
米,两楼的高都是20米,
楼在
楼正南,
楼窗户朝南。
楼内一楼住户的窗台离小区地面的距离
米,窗户高
米。当正午时刻太阳光线与地面成
角时,
楼的影子是否影响
楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由。(参考数据:
,
,
)
如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,BD与AC的交点为E.
(1)求点O到BD的距离及∠OBD的度数;
(2)若DE=2BE,求的值和CD的长.
如图,在□ABCD中,AB=5,AD=10,cosB=,过BC的中点E作EF⊥AB,垂足为点F,连结DF,求DF的长.
解方程组:
已知,求
的值。