从某电视塔塔顶附近的平台处释放一个小球,不计空气阻力和风的作用,小球自由下落。若小球在落地前的最后2s内的位移是80m,求:
(1)该平台离地面的高度。
(2)该小球落地时的瞬时速度大小。(取g=10m/s2)
电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d的两块水平平行放置的导体板形成,匀强磁场的左边界与偏转电场的右边界相距为s,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0,当在两板间加如图乙所示的周期为2t0、幅值恒为U0的电压时,所有电子均从两板间通过,进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:
(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?
(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?
(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m、电荷量为e)
如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点O,方向垂直磁场向里射入一速度方向跟ad边夹角θ = 30°、大小为v0的带正电粒子,已知粒子质量为m,电量为q,ad边长为L,ab边足够长,粒子重力不计,
求:(1)粒子能从ab边上射出磁场的v0大小范围.
(2)如果带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最长时间.
如图所示,宽度为L=0.20 m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1.0Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B="0.50" T。一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v="10" m/s,在运动过程中保持导体棒与导轨垂直。求:
(1)在闭合回路中产生的感应电流的大小;
(2)作用在导体棒上的拉力的大小;
(3)当导体棒移动30cm时撤去拉力,求整个过程中电阻R上产生的热量。
在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向
的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点
垂直于y轴射出磁场,如图所示。不计粒子重力,求
(1)M、N两点间的电势差UMN ;
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从M点运动到P点的总时间t。
如图所示,通电直导线ab质量为m、长为L水平地放置在倾角为的光滑斜面上,通以图示方向的电流,电流强度为I,要求导线ab静止在斜面上。
(1)若磁场的方向竖直向上,则磁感应强度为多大?
(2)若要求磁感应强度最小,则磁感应强度大小和方向如何?