一不透明的袋子中装有4个球,它们除了上面分别标有的号码l、2、3、4不同外,其余均相同。将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球。求第二次取出球的号码比第一次的大的概率。(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)
某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号 |
2号 |
3号 |
4号 |
5号 |
总数 |
|
甲班 |
89 |
100 |
96 |
118 |
97 |
500 |
乙班 |
100 |
95 |
110 |
91 |
104 |
500 |
经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.
请你回答下列问题:
(1)计算两班的优秀率.
(2)求两班比赛成绩的中位数.
(3)比较两班比赛数据的方差哪一个小.
(4)根据以上三条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.
已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,此时点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
解下列方程:
(1)
(2)8(3 -x)2 –72=0
如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(-5,0),且,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.
(1)求A、C两点的坐标;
(2)连接PA,用含t的代数式表示△POA的面积;
(3)当P在线段BO上运动时,在y轴上是否存在点Q,使△POQ与△AOC全等?若存在,请求出t的值并直接写出Q点坐标;若不存在,请说明理由.